Login / Signup

Assessment of worst-case potential airborne asbestos exposure associated with the use of cosmetic talc: application of an exponential decay model.

Eric W MillerEvan M BeckettBenjamin J RobertsDrew CheathamAnders AbelmannJennifer S Pierce
Published in: Environmental monitoring and assessment (2023)
Talc is used in cosmetic products to confer desirable properties, such as moisture absorption and smooth texture, to the finished products. Concerns have been raised about the potential presence of asbestos in products containing cosmetic talc. Reconstruction of potential asbestos exposure from the use of cosmetic talc products (assuming a trace level of asbestos) requires consideration of consumer use patterns. Although application generally only lasts seconds, exposure theoretically may continue if the consumer remains in the immediate vicinity. Most published exposure measurements have not adequately characterized the potential for continued exposure. In this analysis, estimates and measurements of airborne asbestos fiber concentrations associated with cosmetic talc use from 10 published studies were used as inputs to an exponential decay model to estimate "worst-case" exposure during and following application. The resulting geometric mean 30-min time-weighted average (TWA) concentrations were 0.006 f/cc for both puff and shaker application, for diapering, 0.0001 f/cc (adult applying baby powder) and 0.0002 f/cc (infant), and for makeup application, 0.0005 f/cc. Application of an exponential decay model to measured or estimated asbestos concentrations associated with the use of cosmetic talc products yields a conservative means to comprehensively reconstruct such exposures. Moreover, our results support that, if a cosmetic talc powder product contained a trace level of asbestos fibers, the "worst-case" airborne asbestos exposure associated with its application is low.
Keyphrases
  • particulate matter
  • healthcare
  • magnetic resonance imaging
  • magnetic resonance
  • randomized controlled trial
  • air pollution
  • systematic review
  • risk assessment
  • contrast enhanced