Login / Signup

The furin-S2' site in avian coronavirus plays a key role in central nervous system damage progression.

Jinlong ChengYe ZhaoYanxin HuJing ZhaoJia XueGuo-Zhong Zhang
Published in: Journal of virology (2021)
The furin cleavage site plays an important role in virus pathogenicity. The spike protein of SARS-CoV-2 harbors a furin cleavage site insertion in contrast to SARS-CoV, which may be related to its stronger communicability. An avian coronavirus with an extra furin cleavage site upstream of the fusion peptide (S2' site) infected monocyte cells and neuron cells leading to viremia or encephalitis, respectively. Immunohistochemistry and real-time quantitative polymerase chain reaction were used to follow disease progression and demonstrated differences between the parent avian coronavirus and mutated avian coronavirus with a furin-S2' site. Magnetic resonance imaging and biological dye to evaluate the blood-brain barrier permeability showed that avian coronavirus with a furin-S2' site had increased permeability compared with parent avian coronavirus. Immunohistochemistry of brains after intracerebral injection of avian coronavirus and immunofluorescence staining of primary neuron cells demonstrated the furin-S2' site expanded the cell tropism of the mutant avian coronavirus to neuron cells. TNF-α, which has a key role in blood-brain barrier permeability, was highly induced by avian coronavirus with a furin-S2' site compared with the parent avian coronavirus. We demonstrated the process involved in mutant avian coronavirus-induced disease and that the addition of a furin-S2' site changed the virus cell tropism.IMPORTANCECoronaviruses have broken out three times in two decades. Spike (S) protein plays a key role in the process of infection. To clarify importance of furin cleavage site in spike protein for coronavirus, we investigated the pathogenesis of neurotropic avian coronavirus whose spike protein contains an extra furin cleavage site (furin-S2' site). By combining real-time quantitative polymerase chain reaction and immunohistochemistry we demonstrated that infectious bronchitis virus (IBV) infects brain instead of trachea when its S protein contains furin-S2' site. Moreover, the virus was shown to increase the permeability of blood-brain barrier, infect neuron cells and induce high expression of TNF-α. Based on these results we further show that furin cleavage site in S protein plays an important role in coronavirus pathogenicity and cell tropism. Our study extends previous publications on function of S protein of coronavirus, increasing the understanding of researchers to coronavirus.
Keyphrases