Integration of AlphaFold with Molecular Dynamics for Efficient Conformational Sampling of Transporter Protein NarK.
Jun OhnukiKei-Ichi OkazakiPublished in: The journal of physical chemistry. B (2024)
Transporter proteins carry their substrate across the cell membrane by changing their conformation. Thus, conformational dynamics are crucial for transport function. However, clarifying the complete transport cycle is challenging even with the current structural biology approach. Molecular dynamics (MD) simulation is a computational approach that can provide the time-resolved conformational dynamics of transporter proteins in atomic details but suffers from a high computational cost. Here, we integrate state-of-the-art protein structure prediction AI, AlphaFold2 (AF2), with MD simulation to reduce the computational cost. Focusing on the transporter protein NarK, we first show that AF2 sampled broad conformations of NarK, including the inward-open, occluded, and outward-open states. We also applied the coevolution-informed mutation in AF2, identifying state-shifting mutations. Then, we show that MD simulations from AF2-generated outward-open conformation, which is experimentally unresolved, captured the essence of the conformational state. We also found that MD simulations from AF2-generated intermediates showed transient dynamics like a transition state connecting two conformational states. This study paves the way for efficient conformational sampling of transporter proteins.