Login / Signup

Hypoxia-Induced Myocardial Hypertrophy Companies with Apoptosis Enhancement and p38-MAPK Pathway Activation.

Xiaoxu LiZhijun PuGang XuYidong YangYu CuiXiaoying ZhouChenyuan WangZhifeng ZhongSimin ZhouJun YinFabo ShanChengzhong YangLi JiaoDewei ChenJian Huang
Published in: High altitude medicine & biology (2024)
Li, Xiaoxu, Zhijun Pu, Gang Xu, Yidong Yang, Yu Cui, Xiaoying Zhou, Chenyuan Wang, Zhifeng Zhong, Simin Zhou, Jun Yin, Fabo Shan, Chengzhong Yang, Li Jiao, Dewei Chen, and Jian Huang. Hypoxia-induced myocardial hypertrophy companies with apoptosis enhancement and p38-MAPK pathway activation. High Alt Med Biol. 00:00-00, 2024. Background: Right ventricular function and remodeling are closely associated with symptom severity and patient survival in hypoxic pulmonary hypertension. However, the detailed molecular mechanisms underlying hypoxia-induced myocardial hypertrophy remain unclear. Methods: In Sprague-Dawley rats, hemodynamics were assessed under both normoxia and hypobaric hypoxia at intervals of 7 (H7), 14 (H14), and 28 (H28) days. Morphological changes in myocardial tissue were examined using hematoxylin and eosin (HE) staining, while myocardial hypertrophy was evaluated with wheat germ agglutinin (WGA) staining. Apoptosis was determined through TUNEL assays. To further understand the mechanism of myocardial hypertrophy, RNA sequencing was conducted, with findings validated via Western blot analysis. Results: The study demonstrated increased hypoxic pulmonary hypertension and improved right ventricular diastolic and systolic function in the rat models. Significant elevations in pulmonary arterial systolic pressure (PASP), mean pulmonary arterial pressure (mPAP), right ventricular mean pressure (RVMP), and the absolute value of +dp/dt max were observed in the H14 and H28 groups compared with controls. In addition, right ventricular systolic pressure (RVSP), -dp/dt max , and the mean dp/dt during isovolumetric relaxation period were notably higher in the H28 group. Heart rate increased in the H14 group, whereas the time constant of right ventricular isovolumic relaxation (tau) was reduced in both H14 and H28 groups. Both the right heart hypertrophy index and the heart weight/body weight ratio (HW/BW) were elevated in the H14 and H28 groups. Myocardial cell cross-sectional area also increased, as shown by HE and WGA staining. Western blot results revealed upregulated HIF-1α levels and enhanced HIF-2α expression in the H7 group. In addition, phosphorylation of p38 and c-fos was augmented in the H28 group. The H28 group showed elevated levels of Cytochrome C (Cyto C), whereas the H14 and H28 groups exhibited increased levels of Cleaved Caspase-3 and the Bax/Bcl-2 ratio. TUNEL analysis revealed a rise in apoptosis with the extension of hypoxia duration in the right ventricle. Conclusions: The study established a link between apoptosis and p38-MAPK pathway activation in hypoxia-induced myocardial hypertrophy, suggesting their significant roles in this pathological process.
Keyphrases