Login / Signup

Transient theory for scanning electrochemical microscopy of biological membrane transport: uncovering membrane-permeant interactions.

Siao-Han HuangShigeru Amemiya
Published in: The Analyst (2024)
Scanning electrochemical microscopy (SECM) has emerged as a powerful method to quantitatively investigate the transport of molecules and ions across various biological membranes as represented by living cells. Advantageously, SECM allows for the in situ and non-destructive imaging and measurement of high membrane permeability under simple steady-state conditions, thereby facilitating quantitative data analysis. The SECM method, however, has not provided any information about the interactions of a transported species, i.e. , a permeant, with a membrane through its components, e.g. , lipids, channels, and carriers. Herein, we propose theoretically that SECM enables the quantitative investigation of membrane-permeant interactions by employing transient conditions. Specifically, we model the membrane-permeant interactions based on a Langmuir-type isotherm to define the strength and kinetics of the interactions as well as the concentration of interaction sites. Finite element simulation predicts that each of the three parameters uniquely affects the chronoamperometric current response of an SECM tip to a permeant. Significantly, this prediction implies that all three parameters are determinable from an experimental chronoamperometric response of the SECM tip. Complimentarily, the steady-state current response of the SECM tip yields the overall membrane permeability based on the combination of the three parameters. Interestingly, our simulation also reveals the optimum strength of membrane-permeant interactions to maximize the transient flux of the permeant from the membrane to the tip.
Keyphrases
  • high resolution
  • data analysis
  • endothelial cells
  • high throughput
  • photodynamic therapy
  • fatty acid
  • fluorescence imaging
  • solid phase extraction