Login / Signup

Understanding Förster Energy Transfer through the Lens of Molecular Dynamics.

Mattia AnzolaCristina SissaAnna PainelliAli A HassanaliLuca Grisanti
Published in: Journal of chemical theory and computation (2020)
A multiscale approach to the dynamics of resonant energy transfer (RET) is presented, combining DFT and TD-DFT results on the energy donor (D) and acceptor (A) moieties with an extensive equilibrium and non-equilibrium molecular dynamics (MD) analysis of a bound D-A pair in solution to build a coarse-grained kinetic model. We demonstrate that a thorough MD study is needed to properly address RET: the enormous configuration space visited by the system cannot be reliably sampled accounting only for a few representative configurations. Moreover, the conformational motion of the RET pair, occurring in a similar time scale as the RET process itself, leads to a sizable increase of the overall process efficiency.
Keyphrases
  • molecular dynamics
  • energy transfer
  • density functional theory
  • quantum dots
  • molecular docking
  • cross sectional
  • high speed