Login / Signup

Parametrically guided design of beta barrels and transmembrane nanopores using deep learning.

David Edwin KimJoseph L WatsonDavid C JuergensSagardip MajumderStacey R GerbenAlex KangAsim K BeraXinting LiJulien S Baker
Published in: bioRxiv : the preprint server for biology (2024)
Francis Crick's global parameterization of coiled coil geometry has been widely useful for guiding design of new protein structures and functions. However, design guided by similar global parameterization of beta barrel structures has been less successful, likely due to the deviations required from ideal beta barrel geometry to maintain extensive inter-strand hydrogen bonding without introducing considerable backbone strain. Instead, beta barrels and other protein folds have been designed guided by 2D structural blueprints; while this approach has successfully generated new fluorescent proteins, transmembrane nanopores, and other structures, it requires considerable expert knowledge and provides only indirect control over the global barrel shape. Here we show that the simplicity and control over shape and structure provided by global parametric representations can be generalized beyond coiled coils by taking advantage of the rich sequence-structure relationships implicit in RoseTTAFold based inpainting and diffusion design methods. Starting from parametrically generated idealized barrel backbones, both RFjoint inpainting and RFdiffusion readily incorporate the backbone irregularities necessary for proper folding with minimal deviation from the idealized barrel geometries. We show that for beta barrels across a broad range of global beta sheet parameterizations, these methods achieve high in silico and experimental success rates, with atomic accuracy confirmed by an X-ray crystal structure of a novel beta barrel topology, and de novo designed 12, 14, and 16 stranded transmembrane nanopores with conductances ranging from 200 to 500 pS. By combining the simplicity and control of parametric generation with the high success rates of deep learning based protein design methods, our approach makes the design of proteins where global shape confers function, such as beta barrel nanopores, more precisely specifiable and accessible.
Keyphrases
  • deep learning
  • single molecule
  • high resolution
  • healthcare
  • magnetic resonance imaging
  • machine learning
  • binding protein
  • protein protein