Login / Signup

Iron Regulatory Protein 2 Exerts its Oncogenic Activities by Suppressing TAp63 Expression.

Yanhong ZhangXiu Li FengXiangmudong KongXinbin Chen
Published in: Molecular cancer research : MCR (2020)
Iron regulatory protein 2 (IRP2) is a key regulator of iron homeostasis and is found to be altered in several types of human cancer. However, how IRP2 contributes to tumorigenesis remains to be elucidated. In this study, we sought to investigate the role of IRP2 in tumorigenesis and found that IRP2 promotes cell growth by repressing TAp63, a member of p53 tumor suppressor family. Specifically, we found that IRP2 overexpression decreased, whereas IRP2 deficiency increased, TAp63 expression. We also showed that the repression of TAp63 by IRP2 was independent of tumor suppressor p53. To uncover the molecular basis, we found that IRP2 stabilized TAp63 mRNA by binding to an iron response element in the 3'UTR of p63 mRNA. To determine the biological significance of this regulation, we showed that IRP2 facilitates cell proliferation, at least in part, via repressing TAp63 expression. Moreover, we found that IRP2 deficiency markedly alleviated cellular senescence in TAp63-deficient mouse embryo fibroblasts. Together, we have uncovered a novel regulation of TAp63 by IRP2 and our data suggest that IRP2 exerts its oncogenic activities at least in part by repressing TAp63 expression. IMPLICATIONS: We have revealed a novel regulation of TAp63 by IRP2 and our data suggest that IRP2 exerts its oncogenic activities, at least in part, by repressing TAp63 expression.
Keyphrases
  • poor prognosis
  • binding protein
  • transcription factor
  • cell proliferation
  • endothelial cells
  • squamous cell carcinoma
  • oxidative stress
  • machine learning
  • big data
  • deep learning
  • cell cycle
  • single cell
  • iron deficiency