Neural correlates of improved inductive reasoning ability in abacus-trained children: A resting state fMRI study.
Xiuqin JiaYi ZhangYuzhao YaoFeiyan ChenPeipeng LiangPublished in: PsyCh journal (2021)
Abacus-based mental calculation (AMC) training may improve mathematics-related abilities and transfer to other cognitive domains. Thus, it was hypothesized that inductive reasoning abilities can be improved by AMC training given the overlapping cognitive processes and neural correlates between AMC and inductive reasoning. The aim of the current study was to examine the underlying neurobiological mechanisms of this possible adaption by resting-state functional magnetic resonance imaging (rs-fMRI). Sixty-three children were randomly assigned to either the AMC-trained or the nontrained group. The AMC-trained group was required to perform abacus training for 2 hours per week for 5 years whereas the nontrained group was not required to perform any abacus training. Each participant's rs-fMRI data were collected after abacus training, and regional homogeneity (ReHo) analysis was performed to determine the neural activity differences between groups. The participants' posttraining mathematical ability, intelligence quotients, and inductive reasoning ability were recorded and evaluated. The results revealed that AMC-trained children exhibited a significantly higher mathematical ability and inductive reasoning performance and higher ReHo in the rostrolateral prefrontal cortex (RLPFC) compared to the nontrained group. In particular, the increased ReHo in the RLPFC was found to be positively correlated with improved inductive reasoning performance. Our findings suggest that rs-fMRI may reflect the modulation of training in task-related networks.