Login / Signup

Modelling and Phenotypic Screening of NAP-6 and 10-Cl-BBQ, AhR Ligands Displaying Selective Breast Cancer Cytotoxicity in Vitro.

Jennifer R BakerBrett L PollardAndrew J S LinJayne GilbertStefan PaulaXiao ZhuJennette A SakoffAdam McCluskey
Published in: ChemMedChem (2021)
To exploit the interaction of the aryl hydrocarbon receptor (AhR) pathway in developing breast-cancer-specific cytotoxic compounds, we examined the breast cancer selectivity and the docking pose of the AhR ligands (Z)-2-(2-aminophenyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NAP-6; 5) and 10-chloro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one (10-Cl-BBQ; 6). While the breast cancer selectivity of 5 in vitro is known, we discuss the SAR around this lead and, by using phenotypic cell-line screening and the MTT assay, show for the first time that 6 also presents with breast cancer selectivity, notably in the triple-negative (TN) receptor breast cancer cell line MDA-MB-468, the ER+ breast cancer cell lines T47D, ZR-75-1 and the HER2+ breast cancer cell line SKBR3 (GI50 values of 0.098, 0.97, 0.13 and 0.21 μM, respectively). Indeed, 6 is 55 times more potent in MDA-MB-468 cells than normal MCF10A breast cells (GI50 of 0.098 vs 5.4 μM) and more than 130 times more potent than in cell lines derived from pancreas, brain and prostate (GI50 of 0.098 vs 10-13 μM). Molecular docking poses of 5 and 6 together with analogue synthesis and phenotypic screening show the importance of the naphthalene moiety, and an ortho-disposed substituent on the N-phenyl moiety for biological activity.
Keyphrases