The Role of Interferon Receptors α/β/γ Ablation During Western Diet-Induced Obesity and Insulin Resistance in the Inflectional Model AG129 Mice Strain.
Emylle Costa-BartuliAdrielle Tenório RodriguesSofia Andrade Ribeiro BastosNathan KistenmackerLeticia CrepaldiChristina Maeda TakiyaPatricia ZancanFabio Mendonça GomesMauro Sola-PennaPublished in: Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research (2023)
Diet-induced obesity triggers elevation of circulating pro-inflammatory cytokines and acute-phase proteins, including interferons (IFNs). IFNs strongly contribute to low-grade inflammation associated with obesity-related complications, such as nonalcoholic fat liver disease and diabetes. In this study, AG129 mice model (double-knockout strain for IFN α/β/γ receptors) was fed with a high-fat high-sucrose (HFHS) diet (Western diet) for 20 weeks aiming to understand the impact of IFN receptor ablation on diet-induced obesity, insulin resistance, and nonalcoholic fat liver disease. Mice were responsive to the diet, becoming obese after 20 weeks of HFHS diet which was accompanied by 2-fold increase of white adipose tissues. Moreover, animals developed glucose and insulin intolerance, as well as dysregulation of insulin signaling mediators such as Insulin Receptor Substrate 1 (IRS1), protein kinase B (AKT), and S6 ribosomal protein. Liver increased interstitial cells, and lipid accumulation was also found, presenting augmented fibrotic markers (transforming growth factor beta 1 [Tgfb1], Keratin 18 [Krt18], Vimentin [Vim]), yet lower expression on IFN receptor downstream proteins (Toll-like receptor [TLR] 4, nuclear factor kappa-light-chain-enhancer of activated B cells [NFκB], and cAMP response element-binding protein [CREB]). Thus, IFN receptor ablation promoted effects on NFκB and CREB pathways, with no positive effects on systemic homeostasis in diet-induced obese mice. Therefore, we conclude that IFN receptor signaling is not essential for promoting the complications of diet-induced obesity and thus cannot be correlated with metabolic diseases in a noninfectious condition.
Keyphrases
- nuclear factor
- high fat diet induced
- insulin resistance
- toll like receptor
- weight loss
- type diabetes
- binding protein
- adipose tissue
- immune response
- glycemic control
- metabolic syndrome
- bariatric surgery
- dendritic cells
- low grade
- high fat diet
- inflammatory response
- physical activity
- transforming growth factor
- polycystic ovary syndrome
- skeletal muscle
- signaling pathway
- protein kinase
- gene expression
- epithelial mesenchymal transition
- oxidative stress
- blood glucose
- preterm birth
- blood pressure
- idiopathic pulmonary fibrosis
- radiofrequency ablation
- poor prognosis
- systemic sclerosis
- lps induced
- risk factors
- wild type
- cancer therapy
- cell death
- atrial fibrillation