Login / Signup

Characterizing mobility patterns and malaria risk factors in semi-nomadic populations of Northern Kenya.

Hannah R MeredithAmy WesolowskiDennis OkothLinda MaragaGeorge AmbaniTabitha ChepkwonyLucy AbelJoseph KipkoechGilchrist LokoelDaniel EsimitSamuel LokemerJames MaragiaWendy Prudhomme O'MearaAndrew A Obala
Published in: medRxiv : the preprint server for health sciences (2023)
While many studies have characterized mobility patterns and disease dynamics of individuals from settled populations, few have focused on more mobile populations. Highly mobile groups are often at higher disease risk due to their regular movement that may increase the variability of their environments, reduce their access to health care, and limit the number of intervention strategies suitable for their lifestyles. Quantifying the movements and their associated disease risks will be key to developing intervention strategies more suitable for mobile populations. Here, we worked with four semi-nomadic communities in Central Turkana, Kenya to 1) characterize mobility patterns of travelers from semi-nomadic communities and 2) test the hypothesis that semi-nomadic individuals are at greater risk of exposure to malaria during seasonal migrations than when staying at their semi-permanent settlements. From March-October, 2021, we conducted a study in semi-nomadic households (n=250) where some members traveled with their herd while others remained at the semi-permanent settlement. Participants provided medical and travel histories, demographics, and a dried blood spot for malaria testing before and after the travel period. Further, a subset of travelers was given GPS loggers to document their routes. Four travel patterns emerged from the logger data, Long Term, Transient, Day trip, and Static, with only Long Term and Transient trips being associated with malaria cases detected in individuals who carried GPS devices. After completing their trips, travelers had a higher prevalence of malaria than those who remained at the household (9.2% vs 4.4%), regardless of gender, age group, and catchment area. These findings highlight the need to develop intervention strategies amenable to mobile lifestyles that can ultimately help prevent the transmission of malaria.
Keyphrases