Photodynamic therapy alone or in combination to counteract bacterial infections.
Sébastien ClémentJean-Yves WinumPublished in: Expert opinion on therapeutic patents (2024)
Antibacterial photodynamic therapy (PDT) is an appealing approach for treating bacterial infections, especially biofilm-related ones, by releasing reactive oxygen species (ROS) upon light activation. Its success is driven by a growing variety of photosensitizers (PSs) with tailored properties, like water solubility, controllable surface charge, and ROS generation efficiency. Among them, Aggregation Induced Emission (AIE)-type PSs are promising, demonstrating enhanced efficacy when aggregated in biological environments. However, the penetration of pristine PSs into bacterial biofilms within deep tissues or complex anatomical regions is limited, reducing their antibacterial effectiveness. To address this, nanotechnology has been integrated into antibacterial PDT to synthesize various nano-PSs. This adaptability allows seamless integration with other antimicrobial treatments, offering a comprehensive approach to combat localized infections, especially in dentistry and dermatology. By combining PSs with complementary therapies, antibacterial PDT offers a multifaceted strategy for effective microbial control and management.
Keyphrases