Dynamics and Activation of Membrane-Bound B Cell Receptor Assembly.
Hung Nguyen DoMingfei ZhaoS Munir AlamS GnanakaranPublished in: bioRxiv : the preprint server for biology (2024)
B-cell receptor complexes (BCR) are expressed on the surface of a B-cell and are the critical regulators of adaptive immune response. Even though the relevance of antibodies has been known for almost a hundred years, the antigen-dependent activation of antibody-producing B-cells has remained elusive. Several models have been proposed for BCR activation, including cross-linking, conformation-induced oligomerization, and dissociation activation models. Recently, the first cryo-EM structure of the human B-cell antigen receptor of the IgM isotype was published. Given the new asymmetric BCR complex, we have carried out extensive molecular dynamics simulations to probe the conformational changes upon antigen binding and the influence of the membrane. We identified two critical dynamical events that could be associated with antigen-dependent activation of BCR. First, antigen binding caused increased flexibility in regions distal to the antigen binding site. Second, this increased flexibility led to the rearrangement of helices in transmembrane helices, including the relative interaction of Igα/Igβ, which has been responsible for intracellular signaling. Further, these transmembrane rearrangements led to changes in localized lipid composition. Even though the simulations considered only a single BCR complex, our work indirectly supports the dissociation activation model.