Folic acid-chitosan coated stylosin nanostructured lipid carriers: fabrication, in vitro-in vivo assessment in breast malignant cells.
Soroush SadeghiMasoud Homayouni TabriziAmin FarhadiPublished in: Journal of biomaterials science. Polymer edition (2022)
Synthesis of targeted nanostructure lipid carriers for stylosin (STY-CFN-NPs) delivery to MCF-7 cells. STY-CFN-NPs were formulated via the homogenization and ultra-sonication technique. After evaluating the amount of drug encapsulation and FA binding, the toxicity effect of the STY and STY-CFN-NPs on MCF-7 cells was measured by the MTT method. Cell cycle analysis, AO/PI staining and qPCR to assess the inducing of apoptosis as well as Tubo cancer cell inoculated mouse model for antitumor properties of STY-CFN-NPs were used. Significant increases in nanoparticle size and changes in zeta potential were observed after FA-CS coating on nanoparticles. Slow release of the STY within 144 h as well as the acceptable rate for STY encapsulation efficiency (92.4% and FA binding (52.5%) to the STY-CFN-NPs (PS: 66.26 ± 3.02 nm, ZP: 29.54 ± 1.01 mV and PDI: 0.32 ± 0.01) was reported. STY-CFN-NPs exhibited higher toxicity compared to STY suspension and treatment with STY-CFN-NPs was lead to increased apoptotic cells, stopped cells in the SubG1 phase, and also increased caspase and BAX expression and decreased BCL-2 and BCL-XL expression in in vitro and decreased the size of murine tumors (54.57% in 16 days) in in vivo . The results showed STY-CFN-NPs have good potential for breast cancer management.