Login / Signup

Anti-inflammatory effects of sericin and swimming exercise in treating experimental Achilles tendinopathy in rat.

Koksal GundogduOzgen Kılıc ErkekGulsah GundogduDilek SayinGulcin Abban Mete
Published in: Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme (2024)
The aim of this study was to assess the effectiveness of combining sericin with swimming exercise as a treatment for type-I collagenase-induced Achilles tendinopathy (AT) in rats, with a focus on inflammatory cytokines. An experimental AT model was established using type-I collagenase in male Sprague-Dawley rats, categorized into five groups: Group 1 (Control + Saline), Group 2 (AT), Group 3 (AT + exercise), Group 4 (AT + sericin), and Group 5 (AT + sericin + exercise). Intratendinous sericin administration (0.8 g/kg/mL) took place from days 3 to 6, coupled with 30 min daily swimming exercise sessions (5 days/week, 4 weeks). Serum samples were analyzed using ELISA for tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-10 (IL-10), and total antioxidant-oxidant status (TAS-TOS), alongside histopathological and immunohistochemical assessments of Achilles tendon samples. Elevated TNF-α and IL-1β and decreased IL-10 levels were evident in Group 2; Of these, TNF-α and IL-1β were effectively reduced and IL-10 increased across all treatment groups, particularly groups 4 and 5. Serum TAS was notably lower in Group 2 and significantly increased in Group 5 compared to Group 2. Histopathologically, Group 2 displayed severe degeneration, irregular fibers, and round cell nuclei, while Group 5 exhibited decreased degeneration and spindle-shaped fibers. The Bonar score increased in Group 2 and decreased in groups 4 and 5. Collagen type-I alpha-1 (Col1A1) expression was notably lower in Group 2 ( P  = 0.001) and significantly increased in groups 4 and 5 compared to Group 2 ( P  = 0.011 and 0.028, respectively). This study underscores the potential of sericin and swimming exercises in mitigating inflammation and oxidative stress linked to AT pathogenesis, presenting a promising combined therapeutic strategy.
Keyphrases