Login / Signup

Interaction of helminth parasites with the haemostatic system of their vertebrate hosts: a scoping review.

Alicia DiosdadoFernando SimónJudit SerratJavier González-Miguel
Published in: Parasite (Paris, France) (2022)
Helminth parasitoses are among the most prevalent health issues worldwide. Their control depends largely on unravelling host-parasite interactions, including parasitic exploitation of the host haemostatic system. The present study undertakes a scoping review of the research carried out in this field with the aim of unifying and updating concepts. Multiple keywords combined with Boolean operators were employed to design the literature search strategy. Two online databases were used to identify original peer-reviewed articles written in English and published before 1st January 2020 describing molecular interactions between helminth parasites and the host haemostatic system. Relevant data from the selected sources of evidence were extracted and analysed. Ninety-six publications reporting 259 interactions were selected. Fifty-three proteins belonging to 32 species of helminth parasites were involved in interactions with components of the host haemostatic system. Many of these proteins from both parasite and host were conserved among the different interactions identified. Most of these interactions were related to the inhibition of the coagulation system and the activation of fibrinolysis. This was associated mainly with a potential of parasites to reduce the formation of blood clots in the host and attributed to biological processes, such as parasite nutrition, survival, invasion, evasion and migration or the appearance of pathological mechanisms in the host. A wide range of helminth parasites have developed similar strategies to exploit the haemostatic system of their hosts, which could be regarded as an evolutionary conserved mechanism that could confer benefits to parasites in terms of survival and establishment in their vertebrate hosts.
Keyphrases
  • plasmodium falciparum
  • systematic review
  • gene expression
  • physical activity
  • social media
  • emergency department
  • randomized controlled trial
  • risk assessment
  • health information
  • drinking water
  • trypanosoma cruzi