Login / Signup

ICUnet++: an Inception-CBAM network based on Unet++ for MR spine image segmentation.

Lei LiJuan QinLianrong LvMengdan ChengBiao WangDan XiaShike Wang
Published in: International journal of machine learning and cybernetics (2023)
In recent years, more attention paid to the spine caused by related diseases, spinal parsing (the multi-class segmentation of vertebrae and intervertebral disc) is an important part of the diagnosis and treatment of various spinal diseases. The more accurate the segmentation of medical images, the more convenient and quick the clinicians can evaluate and diagnose spinal diseases. Traditional medical image segmentation is often time consuming and energy consuming. In this paper, an efficient and novel automatic segmentation network model for MR spine images is designed. The proposed Inception-CBAM Unet++ (ICUnet++) model replaces the initial module with the Inception structure in the encoder-decoder stage base on Unet++ , which uses the parallel connection of multiple convolution kernels to obtain the features of different receptive fields during in the feature extraction. According to the characteristics of the attention mechanism, Attention Gate module and CBAM module are used in the network to make the attention coefficient highlight the characteristics of the local area. To evaluate the segmentation performance of network model, four evaluation metrics, namely intersection over union (IoU), dice similarity coefficient(DSC), true positive rate(TPR), positive predictive value(PPV) are used in the study. The published SpineSagT2Wdataset3 spinal MRI dataset is used during the experiments. In the experiment results, IoU reaches 83.16%, DSC is 90.32%, TPR is 90.40%, and PPV is 90.52%. It can be seen that the segmentation indicators have been significantly improved, which reflects the effectiveness of the model.
Keyphrases