Ultrasound-Assisted Deep Eutectic Solvent Extraction of Phenolic Compounds from Thinned Young Kiwifruits and Their Beneficial Effects.
Ding-Tao WuWen DengJie LiJin-Lei GengYi-Chen HuLiang ZouYi LiuHong-Yan LiuRen-You GanPublished in: Antioxidants (Basel, Switzerland) (2023)
Fruit thinning is a common practice employed to enhance the quality and yield of kiwifruits during the growing period, and about 30-50% of unripe kiwifruits will be thinned and discarded. In fact, these unripe kiwifruits are rich in nutrients and bioactive compounds. Nevertheless, the applications of thinned young kiwifruits and related bioactive compounds in the food and functional food industry are still limited. Therefore, to promote the potential applications of thinned young kiwifruits as value-added health products, the extraction, characterization, and evaluation of beneficial effects of phenolic compounds from thinned young fruits of red-fleshed Actinidia chinensis cv 'HY' were examined in the present study. A green and efficient ultrasound-assisted deep eutectic solvent extraction (UADE) method for extracting phenolic compounds from thinned young kiwifruits was established. A maximum yield (105.37 ± 1.2 mg GAE/g DW) of total phenolics extracted from thinned young kiwifruits by UADE was obtained, which was significantly higher than those of conventional organic solvent extraction (CSE, about 14.51 ± 0.26 mg GAE/g DW) and ultrasound-assisted ethanol extraction (UAEE, about 43.85 ± 1.17 mg GAE/g DW). In addition, 29 compounds, e.g., gallic acid, chlorogenic acid, neochlorogenic acid, catechin, epicatechin, procyanidin B1, procyanidin B2, quercetin-3-rhamnoside, and quercetin-3- O -glucoside, were identified in the kiwifruit extract by UPLC-MS/MS. Furthermore, the contents of major phenolic compounds in different kiwifruit extracts prepared by conventional organic solvent extraction (EE), ultrasound-assisted ethanol extraction (UEE), and ultrasound-assisted deep eutectic solvent extraction (UDE) were compared by HPLC analysis. Results revealed that the content of major phenolics in UDE (about 15.067 mg/g DW) was significantly higher than that in EE (about 2.218 mg/g DW) and UEE (about 6.122 mg/g DW), suggesting that the UADE method was more efficient for extracting polyphenolics from thinned young kiwifruits. In addition, compared with EE and UEE, UDE exhibited much higher antioxidant and anti-inflammatory effects as well as inhibitory effects against α-glucosidase and pancreatic lipase, which were closely associated with its higher content of phenolic compounds. Collectively, the findings suggest that the UADE method can be applied as an efficient technique for the preparation of bioactive polyphenolics from thinned young kiwifruits, and the thinned young fruits of red-fleshed A. chinensis cv 'HY' have good potential to be developed and utilized as functional foods and nutraceuticals.