Chitosan-Based Dressing as a Sustained Delivery System for Bioactive Cytokines.
Sławomir LewickiMichał ZwolińskiAdrian HovagimyanMarta StelmasiakAgnieszka SzarpakAneta LewickaZygmunt PojdaLukasz SzymanskiPublished in: International journal of molecular sciences (2023)
Wounds represent a common occurrence in human life. Consequently, scientific investigations are underway to advance wound healing methodologies, with a notable focus on dressings imbued with biologically active compounds capable of orchestrating the wound microenvironment through meticulously regulated release mechanisms. Among these bioactive agents are cytokines, which, when administered to the wound milieu without appropriate protection, undergo rapid loss of their functional attributes. Within the context of this research, we present a method for fabricating dressings enriched with G-CSF (granulocyte colony-stimulating factor) or GM-CSF (granulocyte-macrophage colony-stimulating factor), showcasing both biological activity and protracted release dynamics. Based on Ligasano, a commercial polyurethane foam dressing, and chitosan crosslinked with TPP (sodium tripolyphosphate), these dressings are noncytotoxic and enable cytokine incorporation. The recovery of cytokines from dressings varied based on the dressing preparation and storage techniques (without modification, drying, freeze-drying followed by storage at 4 °C or freeze-drying followed by storage at 24 °C) and cytokine type. Generally, drying reduced cytokine levels and their bioactivity, especially with G-CSF. The recovery of G-CSF from unmodified dressings was lower compared to GM-CSF (60% vs. 80%). In summary, our freeze-drying approach enables the storage of G-CSF or GM-CSF enriched dressings at 24 °C with minimal cytokine loss, preserving their biological activity and thus enhancing future clinical availability.