Computational identification of surface markers for isolating distinct subpopulations from heterogeneous cancer cell populations.
Andrea L GardnerTyler A JostAmy BrockPublished in: bioRxiv : the preprint server for biology (2024)
Intratumor heterogeneity reduces treatment efficacy and complicates our understanding of tumor progression. There is a pressing need to understand the functions of heterogeneous tumor cell subpopulations within a tumor, yet biological systems to study these processes in vitro are limited. With the advent of single-cell RNA sequencing (scRNA-seq), it has become clear that some cancer cell line models include distinct subpopulations. Heterogeneous cell lines offer a unique opportunity to study the dynamics and evolution of genetically similar cancer cell subpopulations in controlled experimental settings. Here, we present clusterCleaver, a computational package that uses metrics of statistical distance to identify candidate surface markers maximally unique to transcriptomic subpopulations in scRNA-seq which may be used for FACS isolation. clusterCleaver was experimentally validated using the MDA-MB-231 and MDA-MB-436 breast cancer cell lines. ESAM and BST2/tetherin were experimentally confirmed as surface markers which identify and separate major transcriptomic subpopulations within MDA-MB-231 and MDA-MB-436 cells, respectively. clusterCleaver is a computationally efficient and experimentally validated workflow for identification and enrichment of distinct subpopulations within cell lines which paves the way for studies on the coexistence of cancer cell subpopulations in well-defined in vitro systems.