Login / Signup

Up-regulation of microRNA-203 in influenza A virus infection inhibits viral replication by targeting DR1.

Sen ZhangJing LiJunfeng LiYinhui YangXiaoping KangYuchang LiXiaoyan WuQingyu ZhuYusen ZhouYi Hu
Published in: Scientific reports (2018)
MicroRNAs (miRNAs) are small noncoding RNA molecules that play important roles in various biological processes. Much evidence shows that miRNAs are closely associated with numerous virus infections; however, involvement of cellular miRNAs in influenza A virus (IAV) infection is unclear. Here, we found that expression of miR-203 was up-regulated markedly via two different mechanisms during IAV infection. First, we examined the effects of type I interferon induced by IAV on direct activation of miR-203 expression. Next, we showed that DNA demethylation within the miR-203 promoter region in A549 cells induced its up-regulation, and that expression of DNA methyltransferase 1 was down-regulated following H5N1 virus infection. Ectopic expression of miR-203 in turn inhibited H5N1 virus replication by targeting down-regulator of transcription 1 (DR1), which was identified as a novel target of miR-203. Silencing DR1 in miR-203 knockout cells using a specific siRNA inhibited replication of the H5N1 virus, an effect similar to that of miR-203. In summary, the data show that host cell expression of miR-203 is up-regulated upon IAV infection, which increases antiviral responses by suppressing a novel target gene, DR1. Thus, we have identified a novel mechanism underlying the relationship between miR-203 and IAV infection.
Keyphrases