Login / Signup

Photoactivatable mRNA 5' Cap Analogs for RNA-Protein Crosslinking.

Marcin WarminskiKatarzyna GrabKacper SzczepanskiTomasz SpiewlaJoanna ZuberekJoanna KowalskaJacek Jemielity
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2024)
Chemical modification of messenger RNA (mRNA) has paved the way for advancing mRNA-based therapeutics. The intricate process of mRNA translation in eukaryotes is orchestrated by numerous proteins involved in complex interaction networks. Many of them bind specifically to a unique structure at the mRNA 5'-end, called 5'-cap. Depending on the 5'-terminal sequence and its methylation pattern, different proteins may be involved in the translation initiation and regulation, but a deeper understanding of these mechanisms requires specialized molecular tools to identify natural binders of mRNA 5'-end variants. Here, a series of 8 new synthetic 5'-cap analogs that allow the preparation of RNA molecules with photoreactive tags using a standard in vitro transcription reaction are reported. Two photoreactive tags and four different modification sites are selected to minimize potential interference with cap-protein contacts and to provide complementary properties regarding crosslinking chemistry and molecular interactions. The tailored modification strategy allows for the generation of specific crosslinks with model cap-binding proteins, such as eIF4E and Dcp2. The usefulness of the photoreactive cap analogs is also demonstrated for identifying the cap-binding subunit in a multi-protein complex, which makes them perfect candidates for further development of photoaffinity labeling probes to study more complex mRNA-related processes.
Keyphrases
  • binding protein
  • small molecule
  • molecular docking
  • amino acid
  • palliative care
  • risk assessment
  • drug induced