Diabetoporosis: Role of nitric oxide.
Nasibeh YousefzadehSajad JeddiKhosrow KashfiAsghar GhasemiPublished in: EXCLI journal (2021)
Diabetoporosis, diabetic-related decreased bone quality and quantity, is one of the leading causes of osteoporotic fractures in subjects with type 2 diabetes (T2D). This is associated with lower trabecular and cortical bone quality, lower bone turnover rates, lower rates of bone healing, and abnormal posttranslational modifications of collagen. Decreased nitric oxide (NO) bioavailability has been reported within the bones of T2D patients and can be considered as one of the primary mechanisms by which diabetoporosis is manifested. NO donors increase trabecular and cortical bone quality, increase the rate of bone formation, accelerate the bone healing process, delay osteoporosis, and decrease osteoporotic fractures in T2D patients, suggesting the potential therapeutic implication of NO-based interventions. NO is produced in the osteoblast and osteoclast cells by three isoforms of NO synthase (NOS) enzymes. In this review, the roles of NO in bone remodeling in the normal and diabetic states are discussed. Also, the favorable effects of low physiological levels of NO produced by endothelial NOS (eNOS) versus detrimental effects of high pathological levels of NO produced by inducible NOS (iNOS) in diabetoporosis are summarized. Available data indicates decreased bone NO bioavailability in T2D and decreased expression of eNOS, and increased expression and activity of iNOS. NO donors can be considered novel therapeutic agents in diabetoporosis.
Keyphrases
- bone mineral density
- postmenopausal women
- nitric oxide synthase
- nitric oxide
- body composition
- bone loss
- bone regeneration
- soft tissue
- end stage renal disease
- ejection fraction
- type diabetes
- poor prognosis
- chronic kidney disease
- endothelial cells
- induced apoptosis
- machine learning
- cell death
- deep learning
- prognostic factors
- artificial intelligence
- pi k akt
- kidney transplantation