Polyferrocenylsilane Block Copolymer Spherulites in Dilute Solution.
Jingjie JiangEhsan NikbinGarion HicksShaofei SongYang LiuEdmond C N WongIan MannersJane Y HoweMitchell A WinnikPublished in: Journal of the American Chemical Society (2023)
Self-assembly of block copolymers (BCP) into uniform 3D structures in solution is an extremely rare phenomenon. Furthermore, the investigation of general prerequisites for fabricating a specific uniform 3D structure remains unknown and challenging. Here, through a simple one-pot direct self-assembly (heating and cooling) protocol, we show that uniform spherulite-like structures and their precursors can be prepared with various poly(ferrocenyldimethylsilane) (PFS) BCPs in a variety of polar and non-polar solvents. These structures all evolve from elongated lamellae into hedrites, sheaf-like micelles, and finally spherulites as the annealing temperature and supersaturation degree are increased. The key feature leading to this growth trajectory is the formation of secondary crystals by self-nucleation on the surface of early-elongated lamellae. We identified general prerequisites for fabricating PFS BCP spherulites in solution. These include corona/PFS core block ratios in the range of 1-5.5 that favor the formation of 2D structures as well as the development of secondary crystals on the basal faces of platelets at early stages of the self-assembly. The one-pot direct self-assembly provides a general protocol to form uniform spherulites and their precursors consisting of PFS BCPs that match these prerequisites. In addition, we show that manipulation of various steps in the direct self-assembly protocol can regulate the size and shape of the structures formed. These general concepts show promise for the fabrication and optimization of spherulites and their precursors from semicrystalline BCPs with interesting optical, electronic, or biomedical properties using the one-pot direct self-assembly protocol.