Login / Signup

Can respirator face masks in a developing country reduce exposure to ambient particulate matter?

Sasan FaridiRamin Nabizadeh NodehiSaeed SadeghianMasih TajdiniMohammad HoseiniMasud YunesianShahrokh NazmaraMohammad Sadegh HassanvandKazem Naddafi
Published in: Journal of exposure science & environmental epidemiology (2020)
Respirator face masks (RFMs) as a personal-level intervention is increasingly being utilized to reduce ambient particulate matter (PM) exposure, globally. We tested the effectiveness of 50 commercially available ones in reducing the exposure of ambient particle number concentrations (PNC), PM10, PM2.5, and PM1 (PM ≤ 10, 2.5, and 1 μm in diameter, respectively) in a traffic-affected urban site in Tehran. To examine the efficiency of RFMs, we applied a specific experimental setup including vacuum pumps, dummy heads, connecting tubes, glass chambers, and GRIMM Aerosol Spectrometer to measure all metrics after dummy heads. The average effectiveness of RFMs was in the range of 0.7-83.5%, 3.5-68.1%, 0.8-46.1%, and 0.4-32.2% in reducing ambient PNC, PM10, PM2.5, and PM1, respectively. Considering all metrics, the highest effectiveness was observed always for Biomask, followed by 3 M 9332, due to their well-designed physical characteristics (e.g., adjustable nose clip for any face/nose shape, and size, soft inner material in the nose panel to provide a secure seal against leakage, adjustable or elasticated straps/ear loops to better adjust on any face). Biomask reduced ambient PM10 with a mean value of 94.6 μg m-3 (minimum-maximum: 51.7-100.3 μg m-3), whereas it filtered on average just 29.0 μg m-3 (25.7-43.5 μg m-3) of ambient PM2.5 and 18.2 μg m-3 (14.7-21.8 μg m-3) of PM1. A fuzzy analytical hierarchy process to find the most important design-related factors of RFMs affecting their effectiveness, which showed the exhalation valve and its diaphragm (20.4%), nose clip (19.7%), and cheek flaps (18.6%) are ranked as the main design-related variables. The fuzzy technique for order preference by similarity to ideal solution indicated that Biomask and 3M 9332 had scores of 1 and 0.97, the highest scores compared with other RFMs. This study provides crucial evidence-based results to elucidate the effectiveness and design-related factors of RFMs in real-environmental circumstances.
Keyphrases