Login / Signup

Differential expression of heat shock proteins and activation of mitogen-activated protein kinases in A549 alveolar epithelial cells exposed to cigarette smoke extract.

Anita Somborac-BačuraLada RumoraRuđer NovakDubravka RašićJerka DumićIvana ČepelakTihana Žanić-Grubišić
Published in: Experimental physiology (2018)
Cigarette smoking is one of the main risk factors for development of chronic obstructive pulmonary disease (COPD). We previously reported that cigarette smoke (CS) induces damage to proteins and their ineffective degradation. Here, we hypothesize that CS could induce oxidative stress and cytotoxicity in lung epithelial cells through alterations of heat shock protein (HSP) expression and mitogen-activated protein kinase (MAPK) signalling pathways. We exposed A549 alveolar epithelial cells to various concentrations of cigarette smoke extract (CSE). Higher concentrations of CSE caused apoptosis of A549 cells after 4 h, while after 24 h cell viability was decreased, and lactate dehydrogenase in cell culture medium was increased as well as the number of necrotic cells. Concentrations of malondialdehyde (MDA) were elevated, while total thiol groups were decreased. Changes in the expression of HSPs (HSP70, HSP32 and HSP27) were time-dependent. After 6 h, CSE caused an increase in the expression of HSP70 and HSP32, while after 8 h all examined HSPs were up-regulated and remained increased up to 48 h. Treatment of A549 cells with CSE stimulated phosphorylation of extracellular signal-regulated kinase and p38 in a dose-dependent manner, while c-Jun N-terminal kinase activation was not detected. By using specific inhibitors, we demonstrated that MAPKs and HSPs interplay in CSE effects. In conclusion, our results show that MAPKs and HSPs are involved in the mechanism underlying CSE-induced cytotoxicity and oxidative damage to A549 alveolar epithelial cells. These processes could be related to inflammatory response and apoptosis observed in lungs of patients with smoking-related diseases, such as COPD.
Keyphrases