Ultralow-Threshold and Lightweight Biodegradable Porous PLA/MWCNT with Segregated Conductive Networks for High-Performance Thermal Insulation and Electromagnetic Interference Shielding Applications.
Guilong WangLong WangLun Howe MarkVahid ShaayeganGuizhen WangHuiping LiGuoqun ZhaoChul B ParkPublished in: ACS applied materials & interfaces (2017)
Lightweight, biodegradable, thermally insulating, and electrically conductive materials play a vital role in achieving the sustainable development of our society. The fabrication of such multifunctional materials is currently very challenging. Here, we report a general, facile, and eco-friendly way for the large-scale fabrication of ultralow-threshold and biodegradable porous polylactic acid (PLA)/multiwalled carbon nanotube (MWCNT) for high-performance thermal insulation and electromagnetic interference (EMI) shielding applications. Thanks to the unique structure of the microporous PLA matrix embedded by conductive 3D MWCNT networks, the lightweight porous PLA/MWCNT with a density of 0.045 g/cm3 possesses a percolation threshold of 0.00094 vol %, which, to our knowledge, is the minimum value reported so far. Furthermore, the material exhibits excellent thermal insulation performance with a thermal conductivity of 27.5 mW·m-1·K-1, which is much lower than the best value of common thermal insulation materials. Moreover, it also shows outstanding EMI shielding performance characterized by its high shielding effectiveness (SE) values and absorption-dominated shielding feature. More importantly, its specific EMI SE is as high as 1010 dB·cm3·g-1, which is superior to those of other shielding materials reported so far. Thus, this novel multifunctional material and its general fabrication methodology provide a promising way to meet the growing demand for high-performance multifunctional materials in sustainable development.