A Meta-Device for Intelligent Depth Perception.
Mu-Ku ChenXiaoyuan LiuYongfeng WuJingcheng ZhangJiaqi YuanZhengnan ZhangDin-Ping TsaiPublished in: Advanced materials (Deerfield Beach, Fla.) (2022)
The optical illusion affects depth-sensing due to the limited and specific light-field information acquired by single-lens imaging. The incomplete depth information or visual deception would cause cognitive errors. To resolve this problem, an intelligent and compact depth-sensing meta-device that is miniaturized, integrated, and applicable for diverse scenes in all light levels is demonstrated. The compact and multifunction stereo vision system adopts an array with 3600 achromatic meta-lenses and a size of 1.2 × 1.2 mm 2 to measure the depth over a 30 cm range with deep-learning support. The meta-lens array can act as multiple imaging lenses to collect light field information. It can also work with a light source as an active optical device to project a structured light. The meta-lens array can serve as the core functional component of a light-field imaging system under bright conditions or a structured-light projection system in the dark. The depth information in both ways can be analyzed and extracted by the convolutional neural network. This work provides a new avenue for the applications such as autonomous driving, machine vision, human-computer interaction, augmented reality, biometric identification, etc.
Keyphrases