Pentacenequinone-Modulated 2D GdSn-PQ Nanosheets as a Fluorescent Probe for the Detection of Enrofloxacin in Biological and Environmental Samples.
Deepak DaburPriyanka RanaHui-Fen WuPublished in: ACS applied materials & interfaces (2024)
The fate and effects of fluoroquinolone antibacterial (FQ) on the environment are important since there appears to be a surge in FQ resistance like enrofloxacin (ENR) in both environmental and clinical organisms. Numerous reports indicate that the sensing capabilities of these antibiotics need to be improved. Here, we have investigated the interaction of ENR with our synthesized pentacenequinone-modulated gadolinium-tin (GdSn-PQ) nanosheets and the formation of intermolecular interactions that caused the occurrence of aggregation-induced emission enhancement. The concept for designing hybrid metallic nanosheets comes from the unique features inherited from the parent organic precursor. Due to the distinct interaction between ENR and GdSn-PQ, the interstate conversion (ISC) between GdSn-PQ and ENR induces a significant wavelength shift in photoluminescence (PL), improving reliability, selectivity, and visibility compared to quenching- or AIEE-based methods without peak shifts, allowing for highly sensitive and visually detectable analyses. The fluorescence signal of GdSn-PQ exhibited a linear relationship ( R 2 = 0.9911), with the added ENR concentrations ranging from 5 to 90 nM, with a detection limit of 0.10 nM. We have demonstrated its potential and wide use in the detection of ENR in biological samples (human urine and blood serum) and environmental samples (tap water and seawater) with a recovery rate of 98- 108%. The current approach has demonstrated that the 2D GdSn-PQ nanosheet is a novel and powerful platform for future biological and environmental studies.
Keyphrases
- fluorescent probe
- quantum dots
- human health
- living cells
- energy transfer
- loop mediated isothermal amplification
- label free
- reduced graphene oxide
- life cycle
- endothelial cells
- risk assessment
- photodynamic therapy
- metal organic framework
- highly efficient
- magnetic resonance imaging
- magnetic resonance
- molecularly imprinted
- single molecule
- light emitting
- climate change
- visible light
- electronic health record
- pluripotent stem cells
- solid state
- gram negative