The Role of Aberrant DNA Methylation in Misregulation of Gene Expression in Gonadotroph Nonfunctioning Pituitary Tumors.
Paulina KoberJoanna BoresowiczNatalia RusetskaMaria MaksymowiczAgnieszka PaziewskaMichalina DąbrowskaJacek KunickiWiesław BonickiJerzy OstrowskiJanusz A SiedleckiMateusz BujkoPublished in: Cancers (2019)
Gonadotroph nonfunctioning pituitary adenomas (NFPAs) are common intracranial tumors, but the role of aberrant epigenetic regulation in their development remains poorly understood. In this study, we investigated the effect of impaired CpG methylation in NFPAs. We determined DNA methylation and transcriptomic profiles in 32 NFPAs and normal pituitary sections using methylation arrays and sequencing, respectively. Ten percent of differentially methylated CpGs were correlated with gene expression, and the affected genes are involved in a variety of tumorigenesis-related pathways. Different proportions of gene body and promoter region localization were observed in CpGs with negative and positive correlations between methylation and gene expression, and different proportions of CpGs were located in 'open sea' and 'shelf/shore' regions. The expression of ~8% of genes differentially expressed in NFPAs was related to aberrant methylation. Methylation levels of seven CpGs located in the regulatory regions of FAM163A, HIF3A and PRSS8 were determined by pyrosequencing, and gene expression was measured by qRT-PCR and immunohistochemistry in 83 independent NFPAs. The results clearly confirmed the negative correlation between methylation and gene expression for these genes. By identifying which aberrantly methylated CpGs affect gene expression in gonadotrophinomas, our data confirm the role of aberrant methylation in pathogenesis of gonadotroph NFPAs.