Assessment of Agreement Between Human Ratings and Lexicon-Based Sentiment Ratings of Open-Ended Responses on a Behavioral Rating Scale.
Olivia GratzDuncan VosMegan BurkeNeelkamal SoaresPublished in: Assessment (2021)
To date, there is a paucity of research conducting natural language processing (NLP) on the open-ended responses of behavior rating scales. Using three NLP lexicons for sentiment analysis of the open-ended responses of the Behavior Assessment System for Children-Third Edition, the researchers discovered a moderately positive correlation between the human composite rating and the sentiment score using each of the lexicons for strengths comments and a slightly positive correlation for the concerns comments made by guardians and teachers. In addition, the researchers found that as the word count increased for open-ended responses regarding the child's strengths, there was a greater positive sentiment rating. Conversely, as word count increased for open-ended responses regarding child concerns, the human raters scored comments more negatively. The authors offer a proof-of-concept to use NLP-based sentiment analysis of open-ended comments to complement other data for clinical decision making.