Login / Signup

Dominant ARF3 variants disrupt Golgi integrity and cause a neurodevelopmental disorder recapitulated in zebrafish.

Giulia FasanoValentina MutoFrancesca Clementina RadioMartina VendittiNiloufar MosaddeghzadehSimona CoppolaGraziamaria ParadisiErika ZaraFarhad BazgirAlban ZieglerGiovanni ChillemiLucia BertucciniAntonella TinariAnnalisa VetroFrancesca PantaleoniSimone PizziLibenzio Adrian ContiStefania PetriniAlessandro BrusellesIngrid Guarnetti PrandiCecilia ManciniBalasubramanian ChandramouliMagalie BarthCéline BrisDonatella MilaniAngelo SelicorniMarina MacchiaioloMichaela V GonfiantiniAndrea BartuliRiccardo MarianiCynthia J CurryRenzo GuerriniAnne SlavotinekMaria IasconeBruno DallapiccolaMohammad Reza AhmadianAntonella LauriTartaglia Marco
Published in: Nature communications (2022)
Vesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding. Functional analysis demonstrates variably disruptive consequences of ARF3 variants on Golgi morphology, vesicles assembly and trafficking. Disease modeling in zebrafish validates further the dominant behavior of the mutants and their differential impact on brain and body plan formation, recapitulating the variable disease expression. In-depth in vivo analyses traces back impaired neural precursors' proliferation and planar cell polarity-dependent cell movements as the earliest detectable effects. Our findings document a key role of ARF3 in Golgi function and demonstrate its pleiotropic impact on development.
Keyphrases
  • endoplasmic reticulum
  • copy number
  • binding protein
  • single cell
  • cell therapy
  • poor prognosis
  • small molecule
  • optical coherence tomography
  • dna binding
  • blood brain barrier