Login / Signup

The Biosynthetic Pathway of Major Avenanthramides in Oat.

Zhiyong LiYi ChenDauenpen MeesapyodsukXiao Qiu
Published in: Metabolites (2019)
Avenanthramides are a group of N-cinnamoylanthranilic acids, with health-promoting properties mainly found in oat (Avena sativa L.). However, the biosynthetic mechanism for the main three types of avenanthramides (Avn-A, Avn-B and Avn-C) is not completely understood. In the present study, we report molecular identification and functional characterization of three different types of genes from oat encoding 4-coumarate-CoA ligase (4CL), hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) and a caffeoyl-CoA O-methyltransferase (CCoAOMT) enzymes, all involved in the biosynthesis of these avenanthramides. In vitro enzymatic assays using the proteins expressed in Escherichia coli showed that oat 4CL could convert p-coumaric acid, caffeic acid and ferulic acid to their CoA thioesters. Oat HHTs were only responsible for the biosynthesis of Avn-A and Avn-C using hydroxyanthranilic acid as an acyl acceptor and p-coumaroyl-CoA and caffeoyl-CoA as an acyl donor, respectively. Avn-B was synthesized by a CCoAOMT enzyme through the methylation of Avn-C. Collectively, these results have elucidated the molecular mechanisms for the biosynthesis of three major avenanthramides in vitro and paved the way for metabolic engineering of the biosynthetic pathway in heterologous systems to produce nutraceutically important compounds and make possible genetic improvement of this nutritional trait in oat through marker-assisted breeding.
Keyphrases