CRISPR/Cas9-mediated mutagenesis of FT/TFL1 in petunia improves plant architecture and early flowering.
Mohamed Farah AbdullaKaram MostafaMusa KavasPublished in: Plant molecular biology (2024)
Petunias are renowned ornamental species widely cultivated as pot plants for their aesthetic appeal both indoors and outdoors. The preference for pot plants depends on their compact growth habit and abundant flowering. While genome editing has gained significant popularity in many crop plants in addressing growth and development and abiotic and biotic stress factors, relatively less emphasis has been placed on its application in ornamental plant species. Genome editing in ornamental plants opens up possibilities for enhancing their aesthetic qualities, offering innovative opportunities for manipulating plant architecture and visual appeal through precise genetic modifications. In this study, we aimed to optimize the procedure for an efficient genome editing system in petunia plants using the highly efficient multiplexed CRISPR/Cas9 system. Specifically, we targeted a total of six genes in Petunia which are associated with plant architecture traits, two paralogous of FLOWERING LOCUS T (PhFT) and four TERMINAL FLOWER-LIKE1 (PhTFL1) paralogous genes separately in two constructs. We successfully induced homogeneous and heterogeneous indels in the targeted genes through precise genome editing, resulting in significant phenotypic alterations in petunia. Notably, the plants harboring edited PhTFL1 and PhFT exhibited a conspicuously early flowering time in comparison to the wild-type counterparts. Furthermore, mutants with alterations in the PhTFL1 demonstrated shorter internodes than wild-type, likely by downregulating the gibberellic acid pathway genes PhGAI, creating a more compact and aesthetically appealing phenotype. This study represents the first successful endeavor to produce compact petunia plants with increased flower abundance through genome editing. Our approach holds immense promise to improve economically important potting plants like petunia and serve as a potential foundation for further improvements in similar ornamental plant species.
Keyphrases