Properties and regulation of Gly-Sar uptake and transport in bovine intestinal epithelial cells.
Pengfei HouCaihong WangMiaomiao ZhouHong-Yun LiuPublished in: Journal of animal physiology and animal nutrition (2021)
Intestinal absorption of peptides is vital for the overall health and productivity of dairy cows. This study investigated the regulation, uptake and transport of dipeptides in bovine intestinal epithelial cells (BIECs). We also evaluated the effects of time, pH, concentration of the dipeptides, temperature, presence of diethylpyrocarbonate (DEPC)-an inhibitor of PepT1, and other dipeptides (Met-Met, Lys-Lys or Met-Lys), on the uptake and transport of Gly-Sar-FITC, which was a common fluorophore-labelled dipeptide. Under controlled experiments, BIECs were treated with 25 μM LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor) and 25 μM Perifosine (a protein kinase B (AKT) inhibitor). The subsequent expression of PepT1 in the BIECs was assessed by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. It was found that the uptake and transport of Gly-Sar-FITC were significant high at 37℃ than that at 4℃. The optimal pH for transport and uptake of Gly-Sar-FITC was 6.0-6.5, whereas the two properties decreased significantly in the presence of DEPC, Met-Met, Lys-Lys and Met-Lys (p < 0.05). The apical-to-basolateral transport was also found to be significantly higher than the reverse transport (p < 0.05). PI3K and AKT inhibitors were found to significantly suppress the expression of PepT1, thus impairing uptake and transport of Gly-Sar-FITC. Findings of this study thus suggest that the uptake and transport of Gly-Sar-FITC in BIECs are mediated by PepT1, and the PI3K/AKT signalling pathway regulates the absorption of small peptides.