Login / Signup

Performance of the Grade of Membership Model Under a Variety of Sample Sizes, Group Size Ratios, and Differential Group Response Probabilities for Dichotomous Indicators.

W Holmes Finch
Published in: Educational and psychological measurement (2020)
Social scientists are frequently interested in identifying latent subgroups within the population, based on a set of observed variables. One of the more common tools for this purpose is latent class analysis (LCA), which models a scenario involving k finite and mutually exclusive classes within the population. An alternative approach to this problem is presented by the grade of membership (GoM) model, in which individuals are assumed to have partial membership in multiple population subgroups. In this respect, it differs from the hard groupings associated with LCA. The current Monte Carlo simulation study extended on prior work on the GoM by investigating its ability to recover underlying subgroups in the population for a variety of sample sizes, latent group size ratios, and differing group response profiles. In addition, this study compared the performance of GoM with that of LCA. Results demonstrated that when the underlying process conforms to the GoM model form, the GoM approach yielded more accurate classification results than did LCA. In addition, it was found that the GoM modeling paradigm yielded accurate results for samples as small as 200, even when latent subgroups were very unequal in size. Implications for practice were discussed.
Keyphrases
  • healthcare
  • primary care
  • monte carlo
  • mental health
  • deep learning