Calcium Binding Dramatically Stabilizes an Ancestral Crystallin Fold in Tunicate βγ-Crystallin.
Natalia KozlyukSuvrajit SenguptaJan C BiermaRachel W MartinPublished in: Biochemistry (2016)
The tunicate (Ciona intestinalis) βγ-crystallin represents an intermediate case between the calcium-binding proteins ancestral to the vertebrate βγ-crystallin fold and the vertebrate structural crystallins. Unlike the structural βγ-crystallins in the vertebrate eye lens, this βγ-crystallin strongly binds Ca2+. Furthermore, Ca2+ binding greatly stabilizes the protein, an effect that has previously been observed in microbial βγ-crystallins but not in those of vertebrates. This relationship between binding and protein stabilization makes the tunicate βγ-crystallin an interesting model for studying the evolution of the human βγ-crystallin. We also compare and contrast the binding sites of tunicate βγ-crystallin with those of other βγ-crystallins to develop hypotheses about the functional origin of the lack of Ca2+-binding sites in human crystallins.