Ion Selective Detection Based on the Nuances of the Kinetic Fingerprint for Ion Transfer at Soft Interfaces.
Yishan FangHai-Qiang DengXinjian HuangLishi WangPublished in: Analytical chemistry (2021)
A novel approach has been developed for the selective determination of cations or anions based on the application of Fourier transformed staircase sinusoidal voltammetry (FT-SC-SV) in combination with the interface between two immiscible electrolyte solutions (ITIES) in the four-electrode configuration. The electrochemistry at the ITIES provides a very simple yet sensitive platform for the detection of a broad spectrum of redox inactive ions and even the neutral (bio)molecules that can be charged (e.g., protonated in appropriate pH). FT-SC-SV employs a complex potential excitation, i.e., a large-amplitude sine wave superimposed onto a dc bias potential that is stepped/scanned throughout the potential window. The response current is subsequently analyzed in the frequency domain by FT. Although the ions have close standard/formal transfer potential, discrimination and selective detection can be achieved by the higher harmonics. Feasibility and reliability of the proposed approach were verified with two pairs of ions that have very close transfer potentials across the ITIES and were chosen as the model systems. Besides, the additivity of the ionic current magnitude on concentration measured either in the mixture of ionic analytes or in individually prepared solutions containing the separate ionic analyte was tested. The experimental results prove that the principle of additivity holds. Compared with the traditional voltammetry, FT-SC-SV is simpler and more efficient in discrimination and quantification of apparently indistinguishable ion transfer from the viewpoint of thermodynamics. This demonstration may provide a new way for analytical detection of a broad range of redox inactive ions in terms of both fundamentals and applications.