Login / Signup

Long-read assembly of the Chinese indigenous Ningxiang pig genome and identification of genetic variations in fat metabolism among different breeds.

Haiming MaJuan JiangJun HeHuifang LiuLingling HanYan GongBiao LiZonggang YuShengguo TangYuebo ZhangYehui DuanYulong YinQinghua ZengJiacheng YiXinglong HeYongbo ZengKung Seok KimKang XuFan YangJian-Hua He
Published in: Molecular ecology resources (2021)
Advances in long-read sequencing technology and genome assembly provide an opportunity to improve the pig genome and reveal the full range of structural variations (SVs) between local Chinese and European pigs. To date, little is known about the genomes of some unique Chinese indigenous breeds, such as the Ningxiang pig. Here, we report the sequencing and assembly of a highly contiguous Ningxiang pig genome (NX) via an integration of PacBio single-molecule real-time sequencing, Illumina next-generation sequencing, BioNano optical mapping and Hi-C (chromosome conformation capture) approaches. The assembled genome comprises 2.44 Gb with a contig N50 of 26.1 Mb and 418 contigs in total. These contigs are organized into 121 scaffolds with a scaffold N50 of 139.0 Mb. More than 99.1% of the assembled sequence could be localized to 19 pseudochromosomes and is annotated with 20,914 protein-coding genes and 34.04% repetitive sequences. Comparisons between the NX and European Duroc assemblies revealed many SVs in genes involved in the immune system, nervous system, lipid metabolism and environmental adaptation. The genetic variants include 47 Chinese domestic pig-specific SVs and the associated 74 genes may contribute to the differences in domestic traits compared to European pigs. Moreover, single nucleotide polymorphisms (SNPs) identified from whole genome resequencing data of 73 Chinese pigs, representing 17 geographically isolated breeds, showed their specific genetic variations, population structure and evolutionary patterns. Finally, we explore transcriptional regulation in the first intron of the MYL4 gene, as the genomic SV (281-bp deletion) in Ningxiang pig promotes its subcutaneous fat compared to European pig breeds. This work identifies a set of Asian-specific SVs and SNPs, which will be important resources for modern pig breeding and genetic conservation.
Keyphrases