Login / Signup

Opposite Beet Cyst Nematode Infection Phenotypes of Transgenic Arabidopsis Between Overexpressing GmSNAP18 and AtSNAP2 and Between Overexpressing GmSHMT08 and AtSHMT4 .

Jie ZhaoYukai DuanLingan KongWenkun HuangDeliang PengShiming Liu
Published in: Phytopathology (2022)
The rhg1-a GmSNAP18 (an α-SNAP ) and Rhg4 GmSHMT08 are two major cloned genes conferring soybean cyst nematode resistance in Peking-type soybeans, but the application of α-SNAPs and SHMTs in cyst nematode management remains elusive. In this study, GmSNAP18 and GmSHMT08 , together with their orthologs in Arabidopsis, AtSNAP2 (an α-SNAP ) and AtSHMT4 , were individually transformed into Arabidopsis Col-0 to generate the transgenic lines, and the growth of transgenic plants, beet cyst nematode (BCN) infection phenotypes, and AtSNAP2 , AtSHMT4 , and AtPR1 expression patterns were analyzed using Arabidopsis-BCN compatible interaction system, in addition with protein-protein interaction assay. Pulldown and BiFC assays revealed that GmSNAP18 and GmSHMT08 interacted with AtSHMT4 and AtSNAP2, respectively. Plant root growth was not impacted by overexpression of GmSNAP18 and AtSNAP2 . However, overexpression of GmSHMT08 and AtSHMT4 both increased plant height, additionally, overexpression of GmSHMT08 decreased rosette leaf size. Overexpression of GmSNAP18 and GmSHMT08 both suppressed AtPR1 expression and significantly enhanced BCN susceptibility, while overexpression of AtSNAP2 and AtSHMT4 both substantially boosted AtPR1 expression and remarkably enhanced BCN resistance, in transgenic Arabidopsis. Overexpression of GmSNAP18 reduced, while overexpression of AtSNAP2 unaltered AtSHMT4 expression. Overexpression of GmSHMT08 and AtSHMT4 both suppressed AtSNAP2 expression in transgenic Arabidopsis. Thus, different expression patterns of AtPR1 and AtSHMT4 are likely associated with opposite BCN infection phenotypes of Arabidopsis between overexpressing GmSNAP18 and AtSNAP2 , and between overexpressing GmSHMT08 and AtSHMT4 ; and boosted AtPR1 expression are required for enhanced BCN resistance in Arabidopsis. All these results establish a basis for extension of α-SNAPs and SHMTs in cyst nematode management.
Keyphrases