Improving categorical endpoint longitudinal exposure-response modeling through the joint modeling with a related endpoint.
Chuanpu HuHonghui ZhouPublished in: Journal of pharmacokinetics and pharmacodynamics (2021)
Exposure-response modeling is important to optimize dose and dosing regimens in clinical drug development. While primary clinical trial endpoints often have few categories and thus provide only limited information, sometimes there may be additional, more informative endpoints. Benefits of fully incorporating relevant information in longitudinal exposure-response modeling through joint modeling have recently been shown. This manuscript aims to further investigate the benefit of joint modeling of an ordered categorical primary endpoint with a related near-continuous endpoint, through the sharing of model parameters in the latent variable indirect response (IDR) modeling framework. This is illustrated by analyzing the data collected through up to 116 weeks from a phase 3b response-adaptive trial of ustekinumab in patients with psoriasis. The primary endpoint was based on the 6-point physician's global assessment (PGA) score. The Psoriasis area and severity Index (PASI) data, ranging from 0 to 72 with 0.1 increments, were also available. Separate and joint latent variable Type I IDR models of PGA and PASI scores were developed and compared. The results showed that the separate PGA model had a substantial structural bias, which was corrected by the joint modeling of PGA and PASI scores.