AI-Assisted Body Composition Assessment Using CT Imaging in Colorectal Cancer Patients: Predictive Capacity for Sarcopenia and Malnutrition Diagnosis.
Virginia Soria-UtrillaSánchez-Torralvo Francisco JoséFiorella Ximena Palmas-CandiaRocío Fernández-JiménezFernanda Mucarzel-Suarez-AranaPatricia Guirado-PeláezGabriel Olveira FusterJose Manuel García-AlmeidaRosa Burgos-PeláezPublished in: Nutrients (2024)
(1) Background: The assessment of muscle mass is crucial in the nutritional evaluation of patients with colorectal cancer (CRC), as decreased muscle mass is linked to increased complications and poorer prognosis. This study aims to evaluate the utility of AI-assisted L3 CT for assessing body composition and determining low muscle mass using both the Global Leadership Initiative on Malnutrition (GLIM) criteria for malnutrition and the European Working Group on Sarcopenia in Older People (EWGSOP2) criteria for sarcopenia in CRC patients prior to surgery. Additionally, we aim to establish cutoff points for muscle mass in men and women and propose their application in these diagnostic frameworks. (2) Methods: This retrospective observational study included CRC patients assessed by the Endocrinology and Nutrition services of the Regional University Hospitals of Malaga, Virgen de la Victoria of Malaga, and Vall d'Hebrón of Barcelona from October 2018 to July 2023. A morphofunctional assessment, including anthropometry, bioimpedance analysis (BIA), and handgrip strength, was conducted to apply the GLIM criteria for malnutrition and the EWGSOP2 criteria for sarcopenia. Body composition evaluation was performed through AI-assisted analysis of CT images at the L3 level. ROC analysis was used to determine the predictive capacity of variables derived from the CT analysis regarding the diagnosis of low muscle mass and to describe cutoff points. (3) Results: A total of 586 patients were enrolled, with a mean age of 68.4 ± 10.2 years. Using the GLIM criteria, 245 patients (41.8%) were diagnosed with malnutrition. Applying the EWGSOP2 criteria, 56 patients (9.6%) were diagnosed with sarcopenia. ROC curve analysis for the skeletal muscle index (SMI) showed a strong discriminative capacity of muscle area to detect low fat-free mass index (FFMI) (AUC = 0.82, 95% CI 0.77-0.87, p < 0.001). The identified SMI cutoff for diagnosing low FFMI was 32.75 cm 2 /m 2 (Sn 77%, Sp 64.3%; AUC = 0.79, 95% CI 0.70-0.87, p < 0.001) in women, and 39.9 cm 2 /m 2 (Sn 77%, Sp 72.7%; AUC = 0.85, 95% CI 0.80-0.90, p < 0.001) in men. Additionally, skeletal muscle area (SMA) showed good discriminative capacity for detecting low appendicular skeletal muscle mass (ASMM) (AUC = 0.71, 95% CI 0.65-0.76, p < 0.001). The identified SMA cutoff points for diagnosing low ASMM were 83.2 cm 2 (Sn 76.7%, Sp 55.3%; AUC = 0.77, 95% CI 0.69-0.84, p < 0.001) in women and 112.6 cm 2 (Sn 82.3%, Sp 58.6%; AUC = 0.79, 95% CI 0.74-0.85, p < 0.001) in men. (4) Conclusions: AI-assisted body composition assessment using CT is a valuable tool in the morphofunctional evaluation of patients with colorectal cancer prior to surgery. CT provides quantitative data on muscle mass for the application of the GLIM criteria for malnutrition and the EWGSOP2 criteria for sarcopenia, with specific cutoff points established for diagnostic use.
Keyphrases
- body composition
- skeletal muscle
- end stage renal disease
- ejection fraction
- newly diagnosed
- peritoneal dialysis
- healthcare
- bone mineral density
- prognostic factors
- magnetic resonance imaging
- mental health
- primary care
- magnetic resonance
- insulin resistance
- pregnant women
- coronary artery disease
- artificial intelligence
- high resolution
- deep learning
- health insurance
- risk factors
- postmenopausal women
- cross sectional
- convolutional neural network
- percutaneous coronary intervention
- fluorescence imaging