Introducing the Futile Recanalization Prediction Score (FRPS): A Novel Approach to Predict and Mitigate Ineffective Recanalization after Endovascular Treatment of Acute Ischemic Stroke.
Helen ShenBella B HuasenMurray C KillingsworthSonu Menachem Maimonides BhaskarPublished in: Neurology international (2024)
Objective : This study aims to develop and validate the Futile Recanalization Prediction Score (FRPS), a novel tool designed to predict the severity risk of FR and aid in pre- and post-EVT risk assessments. Methods : The FRPS was developed using a rigorous process involving the selection of predictor variables based on clinical relevance and potential impact. Initial equations were derived from previous meta-analyses and refined using various statistical techniques. We employed machine learning algorithms, specifically random forest regression, to capture nonlinear relationships and enhance model performance. Cross-validation with five folds was used to assess generalizability and model fit. Results: The final FRPS model included variables such as age, sex, atrial fibrillation (AF), hypertension (HTN), diabetes mellitus (DM), hyperlipidemia, cognitive impairment, pre-stroke modified Rankin Scale (mRS), systolic blood pressure (SBP), onset-to-puncture time, sICH, and NIHSS score. The random forest model achieved a mean R-squared value of approximately 0.992. Severity ranges for FRPS scores were defined as mild (FRPS < 66), moderate (FRPS 66-80), and severe (FRPS > 80). Conclusions : The FRPS provides valuable insights for treatment planning and patient management by predicting the severity risk of FR. This tool may improve the identification of candidates most likely to benefit from EVT and enhance prognostic accuracy post-EVT. Further clinical validation in diverse settings is warranted to assess its effectiveness and reliability.
Keyphrases
- endovascular treatment
- blood pressure
- atrial fibrillation
- machine learning
- acute ischemic stroke
- systematic review
- cognitive impairment
- randomized controlled trial
- heart failure
- middle cerebral artery
- climate change
- meta analyses
- metabolic syndrome
- heart rate
- deep learning
- adipose tissue
- artificial intelligence
- oral anticoagulants
- left atrial
- blood brain barrier
- risk assessment
- weight loss
- glycemic control
- cerebral ischemia
- catheter ablation