Login / Signup

Transcriptomic Profiles Associated with Experimental Placebo Effects in Chronic Pain.

Luana CollocaEvelina MocciYang WangRachel MassaleeShuo ChenJewel WhiteKesha JohnsonGloria M Patron FidalgoGerald M WilsonDavid GoldmanSusan G Dorsey
Published in: Clinical pharmacology and therapeutics (2024)
Gene expression networks associated with placebo effects are understudied; in this study, we identified transcriptomic profiles associated with placebo responsivity. Participants suffering from chronic pain underwent a verbal suggestion and conditioning paradigm with individually tailored thermal painful stimulations to elicit conditioned placebo effects. Participants reported pain intensity on a visual analog scale (VAS) anchored from zero = no pain to 100 = maximum imaginable pain. RNA was extracted from venous blood and RNA sequencing and validation tests were performed to identify differentially expressed genes (DEGs) associated with placebo effects, controlling for sex and level of pain. Unbiased enrichment analyses were performed to identify biological processes associated with placebo effects. Of the 10,700 protein-coding genes that passed quality control filters, 667 were found to be associated with placebo effects (FDR <0.05). Most genes (97%) upregulated were associated with larger placebo effects. The 17 top transcriptome-wide significant genes were further validated via RT-qPCR in an independent cohort of chronic pain participants. Six of them (CCDC85B, FBXL15, HAGH, PI3, SELENOM, and TNFRSF4) showed positive and significant (P < 0.05) correlation with placebo effects in the cohort. The overall DEGs were highly enriched in regulation of expression of SLITs and ROBOs (R-HSA-9010553, FDR = 1.26e-33), metabolism of RNA (R-HSA-8953854, FDR = 1.34e-30), Huntington's disease (hsa05016, FDR = 9.84e-31), and ribosome biogenesis (GO:0042254, FDR = 2.67e-15); alternations in these pathways might jeopardize the proneness to elicit placebo effects. Future studies are needed to replicate this finding and better understand the unique molecular dynamics of people who are more or less affected by pain and placebo.
Keyphrases
  • chronic pain
  • gene expression
  • pain management
  • molecular dynamics
  • double blind
  • phase iii
  • single cell
  • clinical trial
  • genome wide
  • poor prognosis
  • transcription factor
  • rna seq
  • open label