Menstrual cycle phase does not affect whole body peak fat oxidation rate during a graded exercise test.
Jacob FrandsenNina PistoljevicJulia Prats QuesadaFrancisco José Amaro-GaheteChristian RitzSteen LarsenFlemming DelaJørn W HelgePublished in: Journal of applied physiology (Bethesda, Md. : 1985) (2020)
Female sex hormones fluctuate in a predictable manner throughout the menstrual cycle in eumenorrheic women. In studies conducted in both animal and humans, estrogen and progesterone have been found to exert individual metabolic effects during both rest and exercise, suggesting that estrogen may cause an increase in fat oxidation during exercise. However, not all studies find these metabolic changes with the natural physiological variation in the sex hormones. To date, no studies have investigated whether whole body peak fat oxidation rate (PFO) and maximal fat oxidation intensity (FATmax) are affected at different time points [mid-follicular (MF), late-follicular (LF), and mid-luteal (ML)] in the menstrual cycle, where plasma estrogen and progesterone are either at their minimum or maximum. We hypothesized that an increased plasma estrogen concentration together with low progesterone concentration in LF would result in a modest but significant increase in PFO. We found no differences in body weight, body composition, or peak oxygen uptake (V̇o2peak) between any of the menstrual phases in the 19 healthy, young eumenorrheic women included in this study. PFO [MF: 0.379 (0.324-0.433) g/min; LF: 0.375 (0.329-0.421) g/min; ML: 0.382 (0.337-0.442) g/min; mean ± (95% CI)] and resting plasma free fatty acid concentrations [MF: 392 (293-492) µmol/l; LF: 477 (324-631) µmol/l; ML: 396 (285-508) µmol/L] were also similar across the menstrual cycle phases. Contrary to our hypothesis, we conclude that the naturally occurring fluctuations in the sex hormones estrogen and progesterone do not affect the whole body PFO and FATmax in young eumenorrheic women measured during a graded exercise test.NEW & NOTEWORTHY Menstrual cycle phase does not affect the peak fat oxidation rate during a graded exercise test. Natural physiological fluctuations in estrogen do not increase peak fat oxidation rate. FATmax is not influenced by menstrual cycle phase in healthy, young eumenorrheic women.
Keyphrases
- estrogen receptor
- resistance training
- high intensity
- fatty acid
- body composition
- adipose tissue
- polycystic ovary syndrome
- hydrogen peroxide
- physical activity
- pregnancy outcomes
- body weight
- middle aged
- cervical cancer screening
- bone mineral density
- nitric oxide
- electron transfer
- case control
- insulin resistance
- metabolic syndrome
- heart rate variability
- mass spectrometry
- pregnant women
- high resolution
- postmenopausal women