Login / Signup

Effects of Sodium Nitrate and Coated Methionine on Lactation Performance, Rumen Fermentation Characteristics, Amino Acid Metabolism, and Microbial Communities in Lactating Buffaloes.

Yanxia GuoZexiang FanMengwei LiHuade XieLijuan PengChengjian Yang
Published in: Microorganisms (2023)
Sodium nitrate is used as a non-protein nitrogen supplement while methionine is considered as a common methionine additive for ruminants. This study investigated the effects of sodium nitrate and coated methionine supplementation on milk yield, milk composition, rumen fermentation parameters, amino acid composition, and rumen microbial communities in lactating buffaloes. Forty mid-lactation multiparous Murrah buffaloes within the initial days in milk (DIM) = 180.83 ± 56.78 d, milk yield = 7.63 ± 0.19 kg, body weight = 645 ± 25 kg were selected and randomly allocated into four groups (N = 10). All of animals received the same total mixed ratio (TMR) diet. Furthermore, the groups were divided into the control group (CON), 70 g/d sodium nitrate group (SN), 15 g/d palmitate coated L-methionine group (MET), and 70 g/d sodium nitrate +15 g/d palmitate coated L-methionine group (SN+MET). The experiment lasted for six weeks, including two weeks of adaption. The results showed that most rumen-free amino acids, total essential amino acids, and total amino acids in Group SN increased ( p < 0.05), while the dry matter intake (DMI) and rumen acetate, propionate, valerate, and total volatile fatty acids (TVFA) in Group MET decreased ( p < 0.05). However, there was no significant difference in milk yield, milk protein, milk fat, lactose, total solid content, and sodium nitrate residue in milk among groups ( p > 0.05). Group SN+MET had a decreased rumen propionate and valerate ( p < 0.05), while increasing the Ace, Chao, and Simpson indices of alpha diversity of rumen bacteria. Proteobacteria and Actinobacteriota were significantly increased ( p < 0.05) in Group SN+MET, but Bacteroidota, and Spirochaetota were decreased ( p < 0.05). In addition, Group SN+MET also increased the relative abundance of Acinetobacter , Lactococcus , Microbacterium , Chryseobacterium , and Klebsiella , which were positively correlated with cysteine and negatively correlated with rumen acetate, propionate, valerate, and TVFA. Rikenellaceae_RC9_gut_group was identified as a biomarker in Group SN. Norank_f__UCG-011 was identified as a biomarker in Group MET. Acinetobacter , Kurthia , Bacillus , and Corynebacterium were identified as biomarkers in Group SN+MET. In conclusion, sodium nitrate increased rumen free amino acids, while methionine decreased dry matter intake (DMI) and rumen volatile fatty acids. The combined use of sodium nitrate and methionine enriched the species abundance of microorganisms in the rumen and affected the composition of microorganisms in the rumen. However, sodium nitrate, methionine, and their combination had no significant effect on the milk yield and milk composition. It was suggested that the combined use of sodium nitrate and methionine in buffalo production was more beneficial.
Keyphrases