Login / Signup

Fouling Mitigation by Optimizing Flow Rate and Pulsed Electric Field during Bipolar Membrane Electroacidification of Caseinate Solution.

Vladlen S NichkaVictor V NikonenkoLaurent Bazinet
Published in: Membranes (2021)
The efficiency of separation processes using ion exchange membranes (IEMs), especially in the food industry, is significantly limited by the fouling phenomenon, which is the process of the attachment and growth of certain species on the surface and inside the membrane. Pulsed electric field (PEF) mode, which consists in the application of constant current density pulses during a fixed time (Ton) alternated with pause lapses (Toff), has a positive antifouling impact. The aim of this study was to investigate the combined effect of three different relatively high flow rates of feed solution (corresponding to Reynolds numbers of 187, 374 and 560) and various pulse-pause ratios of PEF current regime on protein fouling kinetics during electrodialysis with bipolar membranes (EDBM) of a model caseinate solution. Four different pulse/pause regimes (with Ton/Toff ratios equal to 10 s/10 s, 10 s/20 s, 10 s/33 s and 10 s/50 s) during electrodialysis (ED) treatment were evaluated at a current density of 5 mA/cm2. It was found that increasing the pause duration and caseinate solution flow rate had a positive impact on the minimization of protein fouling occurring on the cationic surface of the bipolar membrane (BPM) during the EDBM. Both a long pause and high flow rate contribute to a more effective decrease in the concentration of protons and caseinate anions at the BPM surface: a very good membrane performance was achieved with 50 s of pause duration of PEF and a flow rate corresponding to Re = 374. A further increase in PEF pause duration (above 50 s) or flow rate (above Re = 374) did not lead to a significant decrease in the amount of fouling.
Keyphrases
  • bipolar disorder
  • emergency department
  • binding protein
  • ionic liquid
  • risk assessment
  • small molecule