Login / Signup

Electrooxidation of coragen-contaminated wastewater using graphite electrodes and sorbent nano-hydroxyapatite.

Ramya ThangamaniPremkumar Manickam PeriyaramanAmudha ThanarasuKarthikeyan VelayuthamAnuradha DhanasekaranSivanesan Subramanian
Published in: Environmental technology (2021)
The degradation of coragen (C18H14N5O2BrCl2) was tested by the electrooxidation process using graphite electrodes. Further, the advantage of nano-hydroxyapatite (n-Hap), as a cost-effective nano sorbent, in the removal of bromide from coragen was examined. Three different variables such as initial pH, electrolysis time and the current density were used to analyse the effects of the electrolytic process on the degradation of coragen. During electrolysis, under various stages, the parameters such as chemical oxygen demand (COD), chloride and bromide were analysed. The maximum COD, chloride and bromide removal efficiency of 96%, 50% and 99%, respectively, at pH 5, the maximum current density of 7.5 mA cm-2 and 120 min electrolysis time were achieved. Based on the final output of this study, it can be concluded that the electrolysis process can effectively reduce COD, chloride and bromide from coragen in an aqueous medium. Further, the degradation efficiency of the coragen was confirmed through different analyses such as UV spectra, Fourier transform infrared spectroscopy and gas chromotography-mass spectrometry analyses.
Keyphrases