Login / Signup

Exploiting conformational dynamics to modulate the function of designed proteins.

Enrico RennellaDanny D SahtoeJulien S BakerLewis E Kay
Published in: Proceedings of the National Academy of Sciences of the United States of America (2023)
With the recent success in calculating protein structures from amino acid sequences using artificial intelligence-based algorithms, an important next step is to decipher how dynamics is encoded by the primary protein sequence so as to better predict function. Such dynamics information is critical for protein design, where strategies could then focus not only on sequences that fold into particular structures that perform a given task, but would also include low-lying excited protein states that could influence the function of the designed protein. Herein, we illustrate the importance of dynamics in modulating the function of C34, a designed α/β protein that captures β-strands of target ligands and is a member of a family of proteins designed to sequester β-strands and β hairpins of aggregation-prone molecules that lead to a variety of pathologies. Using a strategy to "see" regions of apo C34 that are invisible to NMR spectroscopy as a result of pervasive conformational exchange, as well as a mutagenesis approach whereby C34 molecules are stabilized into a single conformer, we determine the structures of the predominant conformations that are sampled by C34 and show that these attenuate the affinity for cognate peptide. Subsequently, the observed motion is exploited to develop an allosterically regulated peptide binder whose binding affinity can be controlled through the addition of a second molecule. Our study emphasizes the unique role that NMR can play in directing the design process and in the construction of new molecules with more complex functionality.
Keyphrases
  • amino acid
  • artificial intelligence
  • protein protein
  • machine learning
  • binding protein
  • high resolution
  • healthcare
  • deep learning
  • small molecule
  • molecular dynamics
  • quantum dots